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Abstract

This paper contains inequalities for the expectations

of permutation-invariant concave functions of the partial

sums of nonnegative exchangeable random variables. Two

majorization inequalities are derived, and an application in

reliability theory is discussed.
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1. Introduction and Summary

For fixed n > 1 let X = (Xl,...,Xn) denote an n-dimensional

random vector with density function f(S) that is absolutely

continuous w.r.t. the Lebesgue measure or the product measure

of counting measures. X1 , . ..,Xn are said to be exchange-

able if f is invariant under permutations of its arguments.

This paper concerns majorization inequalities for the expec-

tations of certain functions of X1 ,... ,Xn

The notion of majorization defines a partial ordering

of the diversity of the -components of vectors. Let

a = (a1,...,an ), b = (bl,...,b n ) be two n-dimensional vectors

and let a (1) > ... a (n)' b(l) > ... b (n) denote their

ordered components. a is said to majorize b,(in symbols

a b), if

m m
E W a E b for m = l,...,n-1
1 ( 1 (i)

n n
and Z a. = b.. It is known that a > b iff there exists

1111i 1 -

a doubly stochastic matrix Q such that b = aQ, i.e., b is an

"average" of a. A function i: Rn -) R is said to be a Schur-

concave function if a > b implies iP(a) 5 4(b). For a full

treatment of majorization and Schur functions, see Marshall

and Olkin (1979).

In an earlier paper Marshall and Proschan (1965) proved

tMore precisely, XI,...,X n are finitely exchangeable instead

of exchangeable. For the minor distinction between finite
exchangeability and exchangeability see e.g., Tong ((1980),
p. 96.
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the following inequality: Let Xl,...,X n be exchangeable and

let 0: Rn R be Borel measurable, permutation invariant and

concave. If al,...,a n are more diverse than b1 ,.. .,bn in

the sense of majorization, i.e., if a . b, then

EO(bXI,....bnXn ) > EO(alXl,...,anXn ) provided the expectations

exist. This inequality yields a number of useful results and

implies many previously-known results as special cases (see,

e.g., Corollaries 1-3 in their paper). In this paper, we

prove some related results and discuss their applications. The

results (Theorems 1 and 2) involve the expectations of func-

tions of partial sums of exchangeable random variables, and

depend on the notion of majorization in a different manner.

For fixed k < n, let r = (rl,...,rk) be a vector of positive
k

integers such that E r. = n. Let Xl,...,?Xn be exchangeable
1 (

random variables and let Y =(Y 1(.k) denote a

k-dimensional random vector such that

(r) = r1  r) 1 +r2  (r) n
Y1~  E Xi l = 2 X i , ,op k E X i;Y ., x2 _ .... Y Yk

1 r1 l+1 rl+...+rk-l+ 1

that is, () is the sum of r of such X.'s and Y(r) . (r)
t s 1 1 k"''k

do not contain any common elements. Let s = (sl,...,s k )

denote another such vector and Y(s) be defined similarly.

Let *(X) = (yl,...,yk ) denote any real-valued function that
k

is permutation invariant and concave for every fixed E yi
L

We show that (Theorem 1) if s ) r and if the X 's are non-

negative exchangeable random variables, then E(Y ( E ) ) EO(Y (

The needs for considering such a random vector Y and for
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studying inequalities of this type arise from certain appli-

cations. One such application concerns the optimal arrange-

ment policy for parallel and series systems in reliability

theory, and is given in Section 4. In Theorem 2 we show

that, by imposing an additional condition on the joint den-

sity f, the same inequality holds for all Schur-concave func-

tions *.

Since the theorems apply to nonnegative random variables

only, a natural question is whether or not the same state-

ments hold for random varaibles which may take negative

values. We show in Section 3 that the answer is negative even

for i.i.d. normal variables.

2. The Main Results

For the theorems stated in this section, the density

function f of X = (X1,...,X n ) is assumed to be absolutely

continuous w.r.t. the Lebesgue measure or the product measure

of the counting measures. The proofs will be given for the

former. For the product of counting measures, simply change

the integral signs to summation signs.

Theorem 1. If (i) f is permutation invariant and f = 0 if any

xi < 0 (i = 1,...,n), (ii) ) is a concave functionk

for every fixed E yj, and (iii) s > r, then
1

EO(Y ) . '* Y (r) EO(Y(s) ' ) (2.1)
1 k ~ E 1  k-

holds provided that the expectations exist.

@4
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Proof. It is well-known (Marshall and 01kin (1979), Chapter

2) that for simplicity one may assume that

~1 r1 > 2  s 2 ~ r1 + 2  s 1  s2 d

and r. s. for j=3,...,k. Let us define

t d
zi E Xi x z2  E x.

1 s 1+11

and Y. - Y.- = for j = 3,...,,k. Let

g(z11,z) = (z1 lz2I 0 y1.1~ (2.2)

denote the conditional density of (Z11.Z 2  given

4 = (X t+1,. ....X s1) = X0and Y.j y. (j =3,...,k). Then it

is easy to check that g(z1,z 2 ) =g(z 2 z 1) and

EO~( () ,*..,y (r)) E[ff(z +u1z +u y...y )g(z z dz1 k 1 12 23' kl2 d 1z 2

-E[ ff O(z 1+u1Iz 2 +U 2 y3 "'...,yk)g(zIz 2 )dz 1dz 2

+ ff O(z1+Ul1z 2 +u 2 'y3 ...,yk ) g(z Vz 2 )dz 1 dz 2]

-E[ ff {O(z 1 +uDz 2 +u 2 'y3 "..yk)

+ O(z 1+u 2 'z 2 +u l1y 3I...Iyk)}g(zDz 2 )dz Idz 2 1

r S 1
where (u1 1 u 2 ) E x. E+ x.). Now let

S i=t+l 1i=r 1 1

(v11v 2  = z + x.,O). Since x. 0, there exists an

1 1
a -1 c (0,1] which satisfies

v 
1
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(z1+u1 1Z2+U2 ) = a(z 1+vlz 2 +v 2 ) + (l-) (z1+V 2 ,z2 +v),

(Z1+U2 ,Z2+U1 ) -(1-a)(Zl+Vl1z2 +V2 ) + a(z1+v21z 2+v1 )

for every point in {(zlz 2 ): z1 a z2}. Thus, for every fixed

(x ,'Y3,...,yk )  and every such (ZlZ 2 ) ,

O(Zl+Ul,Z2+u2,Y3,...,yk) + *(z1+u2 z2+uyl 3
,.. .,y k )

-> ao(zl+vl,Z 2+v2 ,Y3 ,...,yk) + (1-a) O(zl+v2 ,2+Vl,Y3 ,...,yk)

+ (1-a)$(zl+vl,z2 +v 2 ,Y3
, ...,yk) + ac(zl+V2 , 2+vly 3 ,...,yk).

Consequently one has

E0, (Y (E) , Y(E) )

E[ ff {O(zl+vlz 2 +v2 ,Y3
, ..• yk) + O(Zl+v2,Z2+VY3 yk ) }

x g(zl,Z 2 )dz1 dz 2]

= s

1 ** k

as to be shown. 0

In the next theorem we weaken the condition on 4 to be

any measurable Schur-concave function, and impose a stronger

condition on the conditional density g.

Theorem 2. If (i) f is permutation invariant, f = 0 for any

xi < 0 (i = 1,...,n), and such that the conditional density

g(zl,z 2 ) defined in (2.2) is a Schur-concave function of

(zlZ 2 ) for every fixed (x0 ,y3 ,...,y k ) and every t > 0,
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(ii) *Oylt ... yk ) is a Borel-measurable Schur-concave function,

and (iii) s >. r, then (2.1) holds provided the expectations

exist.

Proof. we shall follow the notation developed in the proof

of Theorem 1 and compare EO(Y (r)) with EcO(Y~s)) for s >. r.

Again for simplicity assume that sl > r 2! r2 > S~ and r. = s
1~ 1J

for j > 2. Then one can write

1 2~ 3 3 'k ~ 1( - '2- ' Y3 '.'

=E~ff{O' (z 1-u 11 2 +U 2)- ' (z1+u 1+u 21z2 )lg(z 1 z 2 )dz 1dz 2]

where for notational convenience 4' (yly 2) stands for

(yly2'3'-'k )and g-is the conditional density of

(Zl1 2 ). It is straightforward to verify that, after following

the same steps as in the proof of Theorem J.1 in Marshall and

01kmn (1979, p. 100), one has

A=E[ ff {0' (zz 2 +u 2) - 'z+u2" H
Z 1= 2!2

X {g(z1-u1,z 2) - g(z1 'z 2-u 1 )dz 1dz 2].

Since 0' and g are Schur-concave functions and u.i > 0

(i = 1.2), one has

(z 1+u 2 "z2 ) >. Z1Iz2+2)

Thus A > 0. 0]
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Remark. Proschan and Sethuraman (1977) previously proved that

if X1 ,...,X n are i.i.d. nonnegative random variables with a

common density h(x) that is log-concave, then the conclusion

in Theorem 2 holds. Their proof depends on an application of

the main theorem in their paper and on a TP2 property of the

convolution of log-concave densities given in Karlin and

Proschan (1960). It is noted here that their result now fol-

lows immediately from Theorem 2. This is so because if

Xl,...,X n are i.i.d. random variables with a common density

that is log-concave, then E Xi and E X. are independent~1
1 sl+l

random variables with a common density that is also log-concave

(see e.g., Das Gupta (1973, Theorem 4.2)). Consequently, thesI  Sl+S 2

joint density of ( E Xi , E Xi ) is a Schur-concave func-
1 sl+l

tion and Theorem 2 applies.

In most applications, the assumption on the Schur-

concavity of the conditional density g(z1 z2 ) of (ZIZ 2) is

not easy to verify. It is clear that the assumption holds

if the following conjecture concerning the convolution of

Schur-concave random variables is true:

Conjecture 1. For n = mk and X = (X,...,X n ) let

jm
Z. E- m X., j = 1,2,...,k.

(j-l)m+l I

If the joint density of X is a Schur-concave function of x

for x e Rn, then the joint density of Z = (Z11 ... , Zk) is a

Schur-concave function ofz for z c Rk for all positive inte-

gers k and m.
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It is not yet known to us whether this conjecture is

true or not for the continuous case. However, the following

counterexample shows that at least it is not true for the

discrete case.

Example 1. Consider k = m = 2, and assume that (XI,X 2 ,X 3 ,X 4)

takes only integer values 0,1,2,3. Let Z1 = X1 + X2 ,

Z2 = X3 + X4 . Then P(Z 1 = 4, Z2 = 2] is the probability of

the set of the following points:

(3,1,1,1), (1,3,1,1), (2,2,1,1), (2,2,2,0) (2,2,0,2)

(3,1,2,0), (3,1,0,2), (1,3,2,0), (1,3,0,2)

Similarly P[Z 1 = Z2 = 31 is the probability of the set con-

3isting of

(2,1,2,1), (2,1,1,2), (1,2,2,1), (1,2,1,2),

(2,1,3,0), (2,1,0,3), (1,2,3,0), (1,2,0,3),

(3,0,2,1), (3,0,1,2), (0,3,2,1), (0,3,1,2),

(3,0,3,0), (3,0,0,3), (0,3,3,0), (0,3,0,3).

If the joint density of (XIX 2 ,X3,X4 ) takes values 1/14 for

each of the points (3,1,1,1), (2,2,2,0), (2,2,1,1) and all of

their permuta-tions, and zero otherwise, then it is a Schur-

,* concave function on the product of integer spaces, and one has

P[Z1 = 4, Z2 = 2] =- > 4 = PZ= 3, Z= 3].1214 IT Z1 2=3.

A related problem to Conjecture 1 is the study of a sub-

class of Schur-concave densities. One such subclass is the

Ku
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class of all log-concave densities which are permutation

invariant. This consideration leads us to the next conjec-

ture.

Conjecture 2. In Conjecture 1 if the joint density of X is

log-concave and permutation invariant, then the joint density

of Z is Schur-concave (or even log-concave) and permutation

invariant.

3. -n Example for Random Variables which are Not Nonnegative

In view of the fact that in Marshall and Proschan (1965)

the random variables are not necessarily nonnegative, it might

be tempting to think that results similar to our Theorems 1

and 2 might also hold when the condition that X. 0 a.s. is1

removed. In the following we show that this is not true

even for i.i.d. normal variables.

Consider, for n = 2m, independent normal variables

Xl ...,Xn with means zero and variances one. For t m

consider

t n
Y1= Z Xi' Y2 = X i'

i=l t+l
n

and denote U = Y1 -Y 2 , V = Y1 +Y2 = E X.. Then (U,V) has a
1

bivariate normal distribution with means zero, variances n,

and correlation 2t/n - 1. Thus the conditional distribution

of U given V = v is normal with mean -(2t-n)v and variancen
2
aU[V=v = 4t(n-t)/n. Now choose n = 4 and for E > 0 define

-,
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-(yl-Y2 ) 2 for 0 5 Iyl+y 2 I 5

0 otherwise.

Then 4 is permutation invariant and concave in (ylY 2) for

fixed yl+y 2. It follows that

4 2 4 4
E[{(X I , E Xi ) - (z Xi , z Xi)}Iz X. = 0]

2 1 3 1
4 4 2 4

= -Var((X 1 - Xi ) IV = z X. = 0) + Var((E X. - E Xi ) IV = 0)
2 1 1 3

= -4(4-1)/4 + 4 x2(4-2)/4 = 1 > 0.

By continuity, there exists an c > 0 small enough such that

4 2 4
E[(X I , E X i ) - O(z Xi , z X )]2 1 31

E 4 2 4 4 4
= C E[{O(X I , Z Xi ) (E Xi , E Xi ) X. Xi = v]dP[E Xi  v] > 0.

- 2 1 3 1 1

4. An Application in Reliability Theory

In this section we state an application of Theorem 1 in

reliability theory. Consider n exchangeable components with

life lengths X1 ...,Xn which are obviously nonnegative. If

the components are manufactured independently, then the

joint density f of the Xi's is the product of the common

marginal density; otherwise, if they are manufactured under

the influence of some common factors or a common environment,

0then it is well-known that f is a mixture and the random

variables are conditionally i.i.d. In either case f is

permutation invariant.

Now suppose that a system consists of k subsystems, and
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that the j-th subsystem, consisting of r. 1 such components,J

is required to operate properly with one component in operation

and the others in a standby capacity (j = l,...,k). Then the
rl+... +r

life length Y. of the j-th sybsystem is 1 I X. Now
rl+...+r. 1 +1

let Y ( Y < .. Y() denote the order statistics of(1) (2) (k)

Y1*...Yk and r = (rl,...,rk) be an allocation vector such
k

that r. 1 and Z r. = n. When the subsystems are connected
3 1 3

in series, then the life length of the system is Y(1)" On the

other hand if they are connected in parallel, then it is Y(k)"
k

Now for fixed c. 0, E cjy(j) is permutation invariant and is
1 1

a concave function (a convex) function of (yl..,yk) given
k
E yj if cI > . ck (if c I 1  ... < Ck). Consequently,

Theorem 1 provides a partial ordering for the expected life

length of the system for series and parallel systems. In

particular, for series systems the optimal allocation policy

is such that Irj-rj, : 5 1 for all j ' j', and for parallel

systems an optimal policy is that r I = n-k+l and r2 = =

rk =1i.

r

M&W,



12

References

Das Gupta, S. (1973). S-unimodal functions: Related inequa-
lities and statistical applications. SankhyS, Ser. B, 38,
301-314.

Karlin, S. and Proschan, F. (1960). P61ya type distributions
of convolutions. Ann. Math. Statist., 31, 721-736.

Marshall, A. W. and Olkin, I. (1979). Inequalities: Theory
of Majorization and Its Applications. New York: Academic
Press.

Marshall, A. W. and Proschan, F. (1965). An inequality for
convex functions involving majorization. J. Math. Anal.
Appl., 12, 87-90.

Proschan, F. and Sethuraman, J. (1977). Schur functions in
statistics. I. The preservation theorem. Ann. Math.
Statist., 5, 256-262.

Tong, Y. L. (1980). Probability Inequalities in Multivariate
Distributions. New York: Academic Press.

p

4



F~I.
zI


